8,877 research outputs found

    The factorial validity and reliability of three versions of the Aggression Questionnaire using Confirmatory Factor Analysis and Exploratory Structural Equation Modelling

    Get PDF
    The Aggression Questionnaire (AQ) measures aggression in four domains: Anger, Hostility, Physical Aggression and Verbal Aggression. Moreover, a number of shorter versions of the AQ have emerged. The present study used a large sample of adolescents to test three versions of the AQ. In each case we examined a unidimensional model, a hierarchical model, and a four-factor model. Results of Confirmatory Factor Analysis revealed limited support for a unidimensional model in any of the AQ forms, with results supporting the widely used four-factor model, and to a lesser extent, the hierarchical model. Fit indices for both short-forms of the AQ using Exploratory Structural Equation Modelling were very good. However, results also revealed only partial gender invariance for both scales

    A ROSAT Survey of Contact Binary Stars

    Full text link
    Contact binary stars are common variable stars which are all believed to emit relatively large fluxes of x-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with x-ray data from the ROSAT All-Sky Survey (RASS) to estimate the x-ray volume emissivity of contact binary stars in the galaxy. We obtained x-ray fluxes for 140 contact binaries from the RASS, as well as 2 additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of x-rays from all contact binary systems, with typical luminosities of approximately 1.0 x 10^30 erg s^-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough x-ray emission to account for a significant portion of the galactic x-ray background.Comment: 19 pages, 5 figures, accepted by A

    A relation between moduli space of D-branes on orbifolds and Ising model

    Full text link
    We study D-branes transverse to an abelian orbifold C^3/Z_n Z_n. The moduli space of the gauge theory on the D-branes is analyzed by combinatorial calculation based on toric geometry. It is shown that the calculation is related to a problemto count the number of ground states of an antiferromagnetic Ising model. The lattice on which the Ising model is defined is a triangular one defined on the McKay quiver of the orbifold.Comment: 20 pages, 13 figure

    Entropy measures for complex networks: Toward an information theory of complex topologies

    Full text link
    The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this paper we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of networks through maximum-entropy arguments and will contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure

    Extension of the sun-synchronous Orbit

    Get PDF
    Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earth‟s surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours ± 5 minutes, while ENVISAT uses a 1000 hours ± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits

    The Evolving Activity of the Dynamically Young Comet C/2009 P1 (Garradd)

    Full text link
    We used the UltraViolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the highest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate that this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km2^2, estimated to be more than 20 percent of the surface. Based on our measurements, the comet lost 4x10114x10^{11} kg of ice and dust during this apparition, corresponding to at most a few meters of its surface.Even though this was likely not Garradd's first passage through the inner solar system, the activity of the comet was complex and changed significantly during the time it was observed

    Effects of weak anchoring on C1 and C2 chevron structures

    Get PDF
    We present a theoretical study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic C liquid crystals. We employ a continuum theory which allows for variable cone, azimuthal and layer tilt angles. Equilibrium profiles for the director cone and azimuthal angles in the C1 and C2 states are calculated from the standard Euler-Lagrange minimisation of the total energy of the system. By comparing the total energies of the C1 and C2 states we can determine the globally stable chevron profile and calculate the critical temperature for the C1-C2 transition, which depends on anchoring strength and pretilt angle variations

    Dimensional structural constants from chiral and conformal bosonization of QCD

    Get PDF
    We derive the dimensional non-perturbative part of the QCD effective action for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of the chiral lagrangian are estimated using general relations which are valid in a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated, and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interaction between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.Comment: 21 pages, LaTe
    • 

    corecore